
Parallel Systems Architecture Lab
Babak Falsafi

Team: Nora Abi Akar, Alexandros Daglis, Mario Drumond, Damien
Hilloulin, Ivo Mihailovic, Nooshin Mirzadeh, Stanko Novakovic, Javier Picorel,

Arash Pourhabibi, Dmitrii Ustiugov

Server Benchmarking
with CloudSuite 3.0

PARSA, EPFL

EuroSys’16, London, UK

Preface

§CloudSuite: Benchmark suite of cloud services
§Docker: Automates application deployment via containers
§ PerfKit: Automates benchmarking of cloud providers
§QFlex: Quick& Flexible Rack-Scale Architectural Simulator

§ The tutorial is interactive
§ Please ask questions anytime during tutorial

3

Agenda

CloudSuite 3.0 benchmarks overview

CloudSuite 3.0 on real hardware

Full-system simulation with QFlex

4

CloudSuite 3.0:
A Suite for Emerging Scale-out Applications

Mario Drumond

A Brief History of IT

§ From computing-centric to data-centric
§ Consumer Era: Internet-of-Things in the Cloud

1970s-

PC Era

Mobile Era

Mainframes
1980s 1990s Today+

Consumer Era

6

Data is Shaping Future of IT

§ Data growth (by 2015) = 100x in ten years [IDC 2012]
§ Population growth = 10% in ten years

§ Monetizing data for commerce, health, science, services, ….
§ Big Data is shaping IT & pretty much whatever we do!

7

Data Shaping All Science & Technology

Science (traditionally HPC) entering 4th paradigm
§Analytics using IT on

§ Instrument data
§ Simulation data
§ Sensor data
§ Human data
§ …

HPC & data-centric cloud services are converging
8

Complements theory, empirical
science & simulation

Modern HPC in the Datacenter
§ Increasing popularity of analytics workloads

§ Closely related to traditional HPC workloads (e.g., graphs)

§ Service providers don’t acquire supercomputers
§ All workloads share the same datacenter
§ Cost hard to sustain (e.g., IBM discontinued BlueGene)

§HPC is taking a turn towards datacenters
§ Datacenter provides higher availability, lower queue times, flexibility
§ E.g., Amazon provides HPC instances
§ E.g., Genomic analysis with Hadoop [biodatomics]

9
Datacenters are the heart of both cloud services and science

Datacenters Growing Rapidly

BC 332.

Source: James Hamilton, 2012

Daily growth in 2012 = First five years of business!

10

How are we Designing Cloud Systems?

§ Spoiler alert: We are doing it wrong!

§Modern servers based on desktop processors

§ Server design guided by unrepresentative benchmarks

11
Design needs to be driven by cloud-representative benchmarks

Traditional Benchmarks
§ SPEC, PARSEC, TPC-C, SPLASH, …

§ Single machine metrics (e.g., SPEC score)
§ Metrics related to the performance of a single component

(usually CPU)
§ Vastly different application footprints

§None of these run on a datacenter

12
Traditional benchmarks not suitable for cloud evaluation and research

What traditional benchmarks miss?
§No notion of end-to-end performance metrics

§ Traditional metrics do not reflect user experience

§Cloud services have extensive instruction footprint
§ Multi-megabyte instruction working sets
§ Overall performance highly dependent on processor’s frontend

§Cloud services deal with big data
§ Datasets do not fit in on-chip caches

13
Whatever those benchmarks are modeling, does not apply here

Cloud Service Requirements

§ Throughput:
Owners want computing power for their money

§ Latency (online services):
Users abandon services if response time is high
§ Amazon: 100ms of latency can cause 1% of sales loss
§ YouTube: Users start abandoning video after 2 seconds of wait

14

Benchmark Suite
§CloudSuite’s goal:

Assess performance of cloud services on modern hardware
§ Make the case for cloud service representativeness
§ Identify improvement opportunities for server hardware

§ End-to-end performance metrics
§ Hard problem; still open research question!

15

Cloud Benchmarking with
CloudSuite 3.0 (cloudsuite.ch)

Building block for Google PerfKit, EEMBC Big Data!

In-Memory Analytics
Recommendation System

Graph Analytics
GraphX

Data Analytics
Machine learning

Web Search
Apache Solr & Nutch

Media Streaming
Nginx, HTTP Server

Web Serving
Nginx, PHP server

Data Serving
Cassandra NoSQL

Data Caching
Memcached

Brief History of CloudSuite
§Clearing the Clouds [Ferdman et al., ASPLOS’12] (CloudSuite 1.0)

§ Fundamental mismatch of cloud workloads and modern servers
§ Sever silicon real-estate misuse in current systems

§CloudSuite2.0 – two additional workloads
§ Graph Analytics, Data Caching

§ Insights derived from CloudSuite impacted industry
§ E.g., Cavium ThunderX

§ Integration with Google’s PerfKit Benchmarker

§Now: Official release of 3.0
17

Clearing the Clouds in a Nutshell
[ASPLOS 2012]

Too few
cores!

Cores
too fat!}} }

20 MB (80%) waste of space (no reuse)!

B/W
unused!

Workload/Server Mismatch

Cavium ThunderX
Scale-Out Processor

48-core 64-bit ARM SoC
[blueprinted at EPFL]:
• Designed to serve data
• Specialized chip design for servers
• 10x better efficiency than Xeon

Google PerfKit Benchmarker
§Goal: Standardize Cloud performance evaluation
§A tool to compare cloud service providers
§Consortium of industry and academics

§ Fully automates benchmarks including creating databases,
disks, networks, and virtual machines
§ 26+ benchmarks
§ CloudSuite benchmarks included

§ Shared publicly on GitHub
§ http://www.github.com/GoogleCloudPlatform/PerfKitBenchmarker

20

Perfkit’sWorkflow

21

provisioning

vm spec

provisioning
workflow

installer

topology

execution scoring

publish

prepare
run

cleanup
parse &

store
analysis &

scoring

upload

reporting

Perfkit automates the entire process

What’s new in CloudSuite 3.0
§A couple of different workloads

§ New: In-Memory Analytics
§ New software stack: Graph Analytics, Media Streaming, Web Search

§Updated software packages of all workloads

§Docker containers à ease of deployment
§ This is huge! (literally)

22

Target Audience
§ System designers

§ Assess & compare systems’ performance of cloud workloads

§Computer architects
§ Derive insights for future server design

§HPC community
§ Datacenter & HPC applications converging

23

Key Cloud Service Characteristics

§ Serve independent requests/tasks
§ Operate on huge dataset split into shards
§ Communicate infrequently
§ Strict real-time constraints

Load balancer/
Master node

Cl
ien

t R
eq

ue
sts Dataset

Server

Server

Server

24

CloudSuite 3.0 Benchmarks
§Offline (Analytics)

§ Data Analytics
§ In-Memory Analytics
§ Graph Analytics

§Online
§ Data Caching
§ Data Serving
§ Media Streaming
§ Web Search
§ Web Serving

25

Offline Benchmarks

§Operate on large datasets

§Usually a machine learning algorithm over large datasets

§ Performance metric:
§ Completion time (for a given input size)

§No real-time constraints

26

Data Analytics

§Massive amounts of human-generated data (Big Data)

§ Extract useful information from data
§ Predict user preferences, opinions, behavior
§ Benefit from information (e.g., business, security)

§ Several examples
§ Book recommendation (Amazon)
§ Spyware detection (Facebook)

27

Data Analytics Benchmark

§Application: Text classification
§ Sentiment analysis

§ Spam Identification

§ Software: Mahout (Apache)
§ Popular MapReduce machine learning library

§Dataset: Wikipedia English page articles

28

Data Analytics Benchmark

§ Build a model from a Wikipedia training input
§ Master sends Wikipedia documents for classification
§ Slaves classify documents locally using model
§ Slaves send results to master
§ Performance metric: completion time

Master

HDFS

HDFS

HDFS

Us
er

29

CloudSuite 3.0 Benchmarks
§Offline (Analytics)

§ Data Analytics
§ In-Memory Analytics
§ Graph Analytics

§Online
§ Data Caching
§ Data Serving
§ Media Streaming
§ Web Search
§ Web Serving

30

In-Memory Analytics

§ In-memory processing for human-generated data

§ Extract useful information from user data
§ Predict user preferences, rates

§ Several examples
§ Movie recommendation (Netflix)
§ Item recommendation (Amazon)
§ Song recommendation (Spotify)
§ Recommending new friends, groups, …

(Social networks)

31

In-Memory Analytics Benchmark

§Application: Collaborative filtering
§ Recommendation systems

§ Software: Apache MLlib
§ Popular Apache Spark machine learning library

§Dataset: Movielens video database

32

In-Memory Analytics Benchmark

§ Build a recommendation model with ALS matrix factorization
§ Master partitions rating matrix, user & item vectors; sends them to workers
§ Workers perform local matrix factorization
§ Workers send results to master
§ Performance metric: completion time

Master
Worker

Worker

Worker

Us
er

33

CloudSuite 3.0 Benchmarks
§Offline (Analytics)

§ Data Analytics
§ In-Memory Analytics
§ Graph Analytics

§Online
§ Data Caching
§ Data Serving
§ Media Streaming
§ Web Search
§ Web Serving

34

Graph Analytics

§ Parallel distributed graph processing

§Data mining on graphs

§Graph examples
§ Social networks (Facebook, Twitter)
§ Web graph

35

Graph Analytics Benchmark

§Application: PageRank
§ Measures influence of Twitter users
§ How much attention followers pay to a user

§ Software: Apache GraphX
§ Parallel framework for graph processing

§Dataset
§ Twitter user graph

36

Graph Analytics Benchmark

§ Distributes the graph across nodes
§ Iterative computation: Always with adjacent vertices
§ Communication across machines for adjacent vertices
§ Output: influence of each user in the graph
§ Performance metric: completion time

Master

Twitter
user graph

Worker

Worker

Worker

37

CloudSuite 3.0 Benchmarks
§Offline (Analytics)

§ Data Analytics
§ In-Memory Analytics
§ Graph Analytics

§Online
§ Data Caching
§ Data Serving
§ Media Streaming
§ Web Search
§ Web Serving

38

Online Benchmarks
§Operate on large datasets

§ Throughput is important, but also need high service quality
§ Tail latency of requests is critical for service quality
§ Goal: Maximize throughput under QoS target

§ Performance metrics:
§ Throughput (metric is benchmark-specific)
§ Delivered QoS (in terms of N-th percentile latency)

39

Data Caching

• Web apps are latency-sensitive
• Fetching data from disk is slow
§ Caching data in memory for fast data access

§ General-purpose, in-memory key-value store
§ Caches data for other apps, another tier before back-end

40

Data Caching Benchmark

Cached Tweets

• Driver emulates Twitter users
• Memcached software to cache data in memory
• If data not found in cache, issues a disk access request
• Performance metrics: # requests/second, N-th pct latency

User data req.

41

CloudSuite 3.0 Benchmarks
§Offline (Analytics)

§ Data Analytics
§ In-Memory Analytics
§ Graph Analytics

§Online
§ Data Caching
§ Data Serving
§ Media Streaming
§ Web Search
§ Web Serving

42

Data Serving

§Global-scale online services rely on NoSQL datastores
§ Inherently scalable
§ Suitable for unpredictable schema changes

§ Scale out to meet service requirements
§ Accommodate fast data generation rate

43

Data Serving Operation

Service User

Frontend
NoSQL DB

Service User

Backend

Read Req.
Write Req.

Data Serving
Benchmark

44

Data Serving Benchmark

Backend

• Yahoo! Cloud Serving Benchmark (YCSB) driver
- Predefined mixes of read/write operations
- Popularity of access distributions (e.g., zipfian)
- Interface to popular datastores (e.g., Cassandra, HBase)

Request Emulator

Read & Write
Requests

45

Data Serving Benchmark

Backend

• Cassandra datastore
- Popular NoSQL: many use cases (e.g., Expedia, eBay, Netflix)

• Driver generates dataset
- Defines number & size of fields
- Populates datastore

• Performance metrics: R/W ops/s, N-th pct latency

Request Emulator

Read & Write
Requests

46

CloudSuite 3.0 Benchmarks
§Offline (Analytics)

§ Data Analytics
§ In-Memory Analytics
§ Graph Analytics

§Online
§ Data Caching
§ Data Serving
§ Media Streaming
§ Web Search
§ Web Serving

47

Media Streaming

§Media streaming expected to dominate internet traffic

§ Increasing popularity of media streaming services
§ Video sharing sites, movie streaming services, etc.

48

Media Streaming Operation

Service User Media Server

Videos

49

Media Streaming Benchmark

Client Emulator Media Server

Videos

• Implements HTTP communication
• Uses the videoperf client, based on the httperf traffic generator
• Allows a flexible mix of requests

- Different video lengths and qualities

HTTP
connection

50

Media Streaming Benchmark

Client Emulator Media Server

Videos

• Server required to support HTTP
- Nginx server

• Dataset consists of a mix of pre-encoded videos
- Four video qualities of different durations (240p, 360p, 480p, 720p)
- Exponential popularity distribution

• Performance metrics: streaming bandwidth (Kbps), avg. reply delay

HTTP
connection

51

CloudSuite 3.0 Benchmarks
§Offline (Analytics)

§ Data Analytics
§ In-Memory Analytics
§ Graph Analytics

§Online
§ Data Caching
§ Data Serving
§ Media Streaming
§ Web Search
§ Web Serving

52

Web Search
§Most popular online service

§ Numerous search engines deployed by industry

53

Web Search Operation

Search User Frontend

Index Serving Node (ISN)

Inverted Index

54

Web Search Operation

Search User Frontend

Index Serving Node (ISN)

Query
= “EPFL” Inverted Index

55

Web Search Operation

Search User Frontend

Index Serving Node (ISN)

Query
= “EPFL” Inverted Index

56

Web Search Operation

Search User Frontend

Index Serving Node (ISN)

Query
= “EPFL” Inverted Index

57

Web Search Operation

Search User Frontend

Index Serving Node (ISN)

Query
= “EPFL” Inverted Index

58

Web Search Operation

Search User Frontend

Index Serving Node (ISN)

Query
= “EPFL” Inverted Index

59

Web Search Operation

Search User Frontend

Index Serving Node (ISN)

Query
= “EPFL” Inverted Index

60

Web Search Operation

Search User Frontend

Index Serving Node (ISN)

Inverted Index

• Uses Faban traffic generator
• Flexible request mixes

- # terms per request from published surveys
- Terms extracted from the crawled dataset

61

Web Search Operation

Search User Frontend

Index Serving Node (ISN)

Inverted Index

• Apache Solr search engine for ISNs

62

Web Search Operation

Search User Frontend

Index Serving Node (ISN)

Inverted Index

• Dataset: Inverted index & snippets at ISN
- Generated by crawling public web (Apache Nutch)
- Data at ISN must be memory resident

• Performance metrics: search ops/sec, N-th pct latency - 63

CloudSuite 3.0 Benchmarks
§Offline (Analytics)

§ Data Analytics
§ In-Memory Analytics
§ Graph Analytics

§Online
§ Data Caching
§ Data Serving
§ Media Streaming
§ Web Search
§ Web Serving

64

§ Key to all internet-based services

§All services are accessed through web servers

§Various technologies construct web content
§ HTML, PHP, JavaScript, Ruby

Web Serving

65

Web ServerClient

Web Serving Operation

GET() Query

POST()

Cache Server Database Server
Query

66

Client Emulator

Web Serving Benchmark

• Faban traffic generator
• Pre-configured page transition matrix (Elgg)

Web Server Cache Server Database Server

67

Web Serving Benchmark

• Web server (Nginx)
• Application server (PHP)

- Serves a social network engine (Elgg)

Client Emulator Web Server Cache Server Database Server

68

Web Serving Benchmark

• Cache server (Memcached)

Client Emulator Web Server Cache Server Database Server

69

Web Serving Benchmark

• Database server (MySQL)

• Performance metrics:
pages/second served, N-th pct latency

Client Emulator Web Server Cache Server Database Server

70

CloudSuite 3.0 Benchmarks
§Offline (Analytics)

§ Data Analytics
§ In-Memory Analytics
§ Graph Analytics

§Online
§ Data Caching
§ Data Serving
§ Media Streaming
§ Web Search
§ Web Serving

71

Future directions

§New workload: Intelligent Personal Assistants (IPAs)
§ Examples: Siri, Google Now, Alexa

§Workload overview:
§ System is queried with a question (image or sound file)
§ Applies ML techniques to convert image or sound to text
§ Text is used to query a knowledge graph
§ Answer is returned to user

72

73

Hands-on Session:
CloudSuite 3.0 on Real Hardware

Alexandros Daglis

Demo Session: CloudSuite 3.0
Full-System Simulation

Javier Picorel

Software Simulation
Allows for fast & easy evaluation of a design
§Minimal cost, simulator runs on your desktop
§ Reuse components, don’t implement everything

Enables various benchmarks (e.g., SPEC, CloudSuite)
§Can execute real applications
§Can simulate thousands of disks
§Can simulate very fast networks

76
What are the simulation requirements?

CloudSuite Simulation
Requirements (I)

CloudSuite Benchmarks:
§ Multi-threaded, multi-processor
§ Data-intensive
§ Multi-tier

Þ Exercise OS and I/O extensively
Þ OS and I/O are first-order performance determinants

Need full-system simulation
77

CloudSuite Simulation
Requirements (II)

Server architectures:
§ Many-core processors
§ Multiple memory controllers and memory chips
§ Interconnects, cache hierarchies, …
§ Custom peripherals

Þ Servers are complex hardware stacks
Þ Interaction between layers determines performance

Need detailed cycle-accurate simulation
78

CloudSuite Simulation
Requirements (III)

CloudSuite benchmarks:
§ Seconds of execution (trillions of instructions)

Full-system and cycle-accurate simulation:
§ 1M slowdown vs. real hardware

Þ Long benchmarks and slow simulators
Þ Years of simulation time per experiment

Need low simulation turnaround times
79

Simulation Stack: QFlex

§ Functional Full-System Simulation: QEMU

§ Detailed Microarchitectural Simulation: Flexus

§ Fast Simulation: Statistical sampling

80

Full-System Simulation with QEMU

Full-System Simulation
Requirements

Full-system functional simulator must support:
§ Privileged-mode ISA
§ I/O devices
§ Networks of systems
§ Saving/restoring architecturally-visible state

QEMU provides these capabilities
82

QEMU Configuration & API

§Configuration file defines system components
-Motherboard, CPUs, memory, I/O devices

§ Extension to QEMU provides interface to simulation
- Start and stop simulation
-Access to target system’s architecturally-visible state
-Callback system under certain architectural events
- Save and restore target system’s architecturally-visible state

83

QEMU Interface

QEMU does not provide timing details
§ But provides an architectural interface
§ Allows a user module to take control over timing

QEMU provides Flexus with instructions

Flexus controls instruction flow from QEMU
§ Flexus requests instructions from QEMU
§ Executes received instructions in cycle-accurate mode

84

Detailed Microarchitectural Simulation
with Flexus

Main Idea
Use existing machine emulator (QEMU)
§Handles BIOS (booting, I/O, interrupt routing, …)

Build a “plugin” architectural model simulator
§ Fast – read system’s state from QEMU
§Detailed – interact with and throttle QEMU

86

87

Developing with Flexus
§ Flexus philosophy

§ Fundamental abstractions

§ Important support libraries

§ Simulators and components in Flexus

88

Flexus philosophy
Component-based design
§ Compose simulators from encapsulated components

Software-centric framework
§ Flexus abstractions are not tied to hardware

Cycle-driven execution model
§ Components receive “clock-tick” signal every cycle

SimFlex methodology
§ Designed-in fast-forwarding, checkpointing, statistics

89

Developing with Flexus
§ Flexus philosophy

§ Fundamental abstractions

§ Important support libraries

§ Simulators and components in Flexus

90

Flexus organization

/components /simulators /core

Cache

Interconnect

Feeder

CMP.OoO

UP.OoO

Debug

QEMU
Interface

Stats

Flexus_ROOT

91

Fundamental abstractions
Component
§Component interface

§ Specifies data and control entry points
§Component parameters

§Configuration settings available in configuration file

Simulator
§Wiring

§ Specifies which components and how to connect
§ Specifies default component parameter settings

92

Component interface

Component interface (terminology inspired by Asim [Emer 02])
§Drive: “clock-tick” control entry point to component
§ Port: specifies data flow between components

Components w/ same ports are interchangeable

Component

Drive

Ports

93

Abstractions: Drive

COMPONENT_INTERFACE(

…

DRIVE (Name)

…

);

§ Control entry-point
§ Function called once per cycle

Cache

CacheDrive

94

Abstractions: Port

COMPONENT_INTERFACE(

…

PORT (Type,Payload,Name)

…

);

§ Data exchange between components
§ Ports connected together in simulator wiring

FrontSideOut
Cache

95

Types of ports and channels

§ Type - direction of data and control flow
§ Control flow: Push vs. Pull
§ Data flow: Input vs. Output

§ Payload - arbitrary C++ data type
§ Type and payload must match to connect ports
§ Availability - caller must check if callee is ready

push channel

Data Flow

push
input

pull
output

pull
input

push
output

pull channel

Caller

Caller

Callee

Callee

96

Port and component arrays

§ 1-to-n and n-to-n connections
§ E.g., 1 interconnect -> n network interfaces

§Array dimensions can be dynamic

COMPONENT_INTERFACE(

…

DYNAMIC_PORT_ARRAY(…)

…

);

ToNode
Interconnect

97

Example code using a port

SenderComponent.cpp
void someFunction() {

Message msg;
if (FLEXUS_CHANNEL(Out).available())

{
FLEXUS_CHANNEL(Out) << msg;

}
}

ReceiverComponent.cpp
bool available(interface::In) {

return true; }

void push(interface::In, Message & msg)
{ … }

98

Configuring components

§ Configurable settings associated with component
§ Declared in component specification
§ Can be std::string, int, long, long long, float, double, enum
§ Declaration:

PARAMETER(BufferSize, int, “L2 Buffer
size", “bsize", 64)

§ Use: cfg.bsize

99

Simulator wiring

simulators/name/Makefile.name
§ List components for link
§ Indicate target support

simulators/name/wiring.cpp
1. Include interfaces
2. Declare configurations
3. Instantiate components
4. Wire ports together
5. List order of drives

Feeder

IFetch Execute

L1I L1D

Mux

L2

100

Developing with Flexus
§ Flexus philosophy

§ Fundamental abstractions

§ Important support libraries

§ Simulators and components in Flexus

101

Critical support libraries in
/core
§ Statistics support library

§ Record results for use with stat-manager

§Debug library
§ Control and view Flexus debug messages

102

Statistics support library
§ Implements all the statistics you need

§ Histograms
§ Unique counters
§ Instance counters
§ etc.

§ Example:
Stat::StatCounter myCounter(
statName() + “-count”);
++ myCounter;

103

A typical debug statement

DBG_(Iface,

Comp(*this),

AddCategory(Cache),

(<< "Received on
FrontSideIn[0](Request): "

<< *(aMessage[MemoryMessageTag])

),

Addr(aMessage[MemoryMessageTag]->address())

);

Severity level
Associate with this component

Put this in “Cache” category

Text of the debug message

Add an address field for filtering

104

Debug severity levels
1. Tmp temporary messages (cause warning)
2. Crit critical errors
3. Dev infrequent messages, e.g., progress
4. Trace component defined – typically tracing
5. Iface all inputs and outputs of a component
6. Verb verbose output from OoO core
7. Vverb very verbose output of internals

Compile time
§ make target-severity
§ (e.g., make CMP.Trace-iface)

105

Developing with Flexus
§ Flexus philosophy

§ Fundamental abstractions

§ Important support libraries

§ Simulators and components in Flexus

106

Simulators in Flexus

Trace simulation
§ Every instruction executes in a single cycle
§ Fast Multi-level memory hierarchy
§ Fast Two-level branch prediction

Timing (cycle-accurate) simulation
§ “Cycle-by-cycle” execution of on-chip components:

§ Cores
§ NoC
§ Memory hierarchy
§ …

107

Memory hierarchy

Allows for high MLP
§ Non-blocking, pipelined accesses
§ Hit-under-miss within set

Coherence protocol support
§ MESI and MOESI coherence protocols
§ Non-inclusive cache hierarchy
§ Supports “Downgrade” and “Invalidate” messages
§ Request and snoop virtual channels for progress guarantees

DRAMSim 2.0 integrated for low-level DRAM simulation

108

Out-of-order execution
§ Timing-first simulation approach [Mauer’02]

§ OoO components interpret ARM (32/64 bits) ISA
§ Flexus validates its results with QEMU

§ Idealized OoO to maximize memory pressure
§ Decoupled front-end
§ Precise squash & re-execution
§ Configurable ROB, SB; dispatch, retire rates

§ Memory consistency models (SC, TSO, RMO)

Fast Simulation with Statistical Sampling

Simulation Speed Challenges
§ Longer benchmarks

§ CloudSuite: Trillions of instructions per benchmark

§ Slower simulators
§ Full-system simulation: 1000× slower than real hardware
§ Cycle-accurate simulation: 1000x slower than full-system simulation

110

• Multiprocessor systems
– CMP: 2x cores every processor generation

1,000,000 × slowdown vs. HW à years per experiment

Full-system simulation is slow
§ Simulation slowdown per CPU core

§ Real HW: ~ 2 GIPS 1 s
§ QEMU: ~ 30 MIPS 66 s
§ Flexus, no timing: ~ 900 KIPS 37 m
§ Flexus, OoO: ~ 24 KIPS 23 h

111
2 years to simulate 10 seconds of a 64-core workload!

Statistical Sampling

Random selection of population
§ E.g., 3000 out of 300 million

Predict the behavior based on
the selected sample

Features:
§High accuracy
§ Simple
§ Strong mathematical foundation

112

Sample

Power of a small part to predict behavior of a whole

X

population

Statistical Sampling

Simulation Speedup (I)
Measure in detailed a few parts of the execution
§ From few years to a month

Store functional warming
§ Saves us a few more days

SMARTS
MeasurementDetailed warmupFunctional warming

...Serial

From a few years to less than a month…
113

Simulation Speedup (II)
Store functional warming and parallelize

...

...

...

...

...

Serial

From less than a month to a few hours!

Parallel

114

QFlex Status

QFlex project still an on-going effort…stay tuned!

§ QEMU Function Full-System Simulation

§ QFlex Trace simulation

§ QFlex cycle-accurate simulation

§ Statistical sampling for fast simulation
115

DEMO Session: QFlex Trace Simulator

117

DEMO Session: Overview
“Add a next-line prefetcher with configurable prefetch

degree length”

Steps:
1. QFlex structure overview
2. Create the new component
3. Create a new simulator for the new component
4. Run the new simulator and the baseline
5. Extract and compare results

Send us an email to test our simulator!

Thank You!

For more information please visit us at
parsa.epfl.ch

118

