

Parallel Systems Architecture Lab

Babak Falsafi

Team: Nora Abi Akar, Alexandros Daglis, Mario Drumond, Damien Hilloulin, Nooshin Mirzadeh, Stanko Novakovic, Javier Picorel, Arash Pourhabibi, Georgios Psaropoulos, Dmitrii Ustiugov

Server Benchmarking with CloudSuite 3.0

PARSA, EPFL

HiPEAC' I 6, Prague, Czech Republic

Preface

- CloudSuite: Suite for scale-out datacenter services
- Docker: Automates deployment of apps inside containers
- PerfKit: Automates measuring and comparing cloud offers
- QFlex: Quick, accurate & flexible architectural simulator
- The tutorial is interactive
 - Please ask questions anytime during tutorial

Agenda

CloudSuite 3.0 benchmarks overview

CloudSuite 3.0 on real hardware

Full-system simulation with QFlex

CloudSuite 3.0: A Suite for Emerging Scale-out Applications

Mario Drumond

A Brief History of IT

Mobile Era

Consumer Era

1970s- 1980s 1990s Today+
Mainframes
PC Era

- From computing-centric to data-centric
- Consumer Era: Internet-of-Things in the Cloud

Data is Shaping Future of IT

If the Digital
Universe were
represented by the
memory in a stack
of tablets, in 2013
it would have
stretched
two-thirds the
way to the Moon*

By 2020, there would be 6.6 stacks from the Earth to the Moon*

- Data growth (by 2015) = 100x in ten years [IDC 2012]
 - Population growth = 10% in ten years
- Monetizing data for commerce, health, science, services,
- Big Data is shaping IT & pretty much whatever we do!

Data Shaping All Science & Technology

Science (traditionally HPC) entering 4th paradigm

- Analytics using IT on
 - Instrument data
 - Simulation data
 - Sensor data
 - Human data
 - . . .

Complements theory, empirical science & simulation

Modern HPC in the Datacenter

- Increasing popularity of analytics workloads
 - Closely related to traditional HPC workloads (e.g., graphs)
- Service providers don't acquire supercomputers
 - All workloads share the same datacenter
 - Cost hard to sustain (e.g., IBM discontinued BlueGene)
- HPC is taking a turn towards datacenters
 - Datacenter provides higher availability, lower queue times, flexibility
 - E.g., Amazon provides HPC instances
 - E.g., Genomic analysis with Hadoop [biodatomics]

Datacenters are the heart of both cloud services and science

Datacenters Growing Rapidly

Source: James Hamilton, 2012

Daily growth in 2012 = First five years of business!

How are we Designing Cloud Systems?

- Spoiler alert: we are doing it wrong
- Modern servers practically based on desktop processors
- Server design guided by unrepresentative benchmarks

Traditional Benchmarks

- SPEC, PARSEC, TPC-C, SPLASH, ...
 - Single machine metrics (e.g., SPEC score)
 - Metrics related to the performance of a single component (usually CPU)
 - Vastly different program footprints

None of these run on a datacenter

Cloud Service Requirements

- Throughput: owners want computing power for their money
- Latency (online services): users abandon services if response time is high
 - Amazon: 100ms of latency costs 1% of sales loss
 - YouTube: Users start abandoning video after 2 seconds of wait

CloudSuite Benchmark Suite

- CloudSuite target: assess performance of cloud services on modern hardware
 - Make the case for cloud service representativeness
 - Identify improvement opportunities for server hardware
- End-to-end performance metrics
 - Hard problem; still open research question!

Cloud Benchmarking with

CloudSuite 3.0 (cloudsuite.ch)

Data Analytics Machine learning

Graph Analytics GraphX

In-Memory Analytics Recommendation System

Web Search Apache Solr & Nutch

Media Streaming Nginx, HTTP Server

Web Serving Nginx, PHP server

Data Caching Memcached

Data Serving Cassandra NoSQL

Building block for Google PerfKit, EEMBC Big Data!

Google PerfKit Benchmarker

- Goal: Standardize Cloud performance evaluation
- A tool to compare cloud service providers
- Consortium of industry and academics
- Fully automates benchmarks including creating databases, disks, networks, and virtual machines
 - 26+ benchmarks
 - CloudSuite benchmarks included
- Shared publicly on GitHub
 - http://www.github.com/GoogleCloudPlatform/PerfKitBenchmarker

Cavium ThunderX Scale-Out Processor

BREAKING NEWS

SLIDESHOW: CES: Bosch Aims to Connect Whole World

MICROPROCESSOR report

Insightful Analysis of Processor Technology

THUNDERX RATTLES SERVER MARKET

Cavium Develops 48-Core ARM Processor to Challenge Xeon

By Linley Gwennap (June 9, 2014)

48-core 64-bit ARM SoC

[blueprinted at EPFL]:

- Designed to serve data
- Specialized chip design for servers
- I0x better efficiency than Xeon

designlines WIRELESS & NETWORKING

News & Analysis

Big-Data Benchmark Brewing

EEMBC works on SoC-agnostic spec

Rick Merritt

10/15/2014 08:00 AM EDT

SAN JOSE, Calif. — A new benchmark suite for scaled-out servers is in the works with the first piece of it expected early next year. The processor-agnostic metrics aim to set standards for measuring today's data center workloads.

A new cloud and big-data server working group of the Embedded Microprocessor Benchmark Consortium (EEMBC) hopes to deliver a suite of seven benchmarks. It aims to complete before April three of them -- memory caching, media serving, and graph analysis.

"Typically when we go to a server customer they ask for SpecInt numbers, that's been the traditional benchmarks for servers for a long time, but SpecInt is not a very good metric for distributed data loads or available instruction and memory parallelism," said Bryan Chin, a distinguished engineer from Cavium.

Brief History of CloudSuite

- Clearing the Clouds [Ferdman et al., ASPLOS'12] (CloudSuite 1.0)
 - Fundamental mismatch of cloud workloads and modern servers
 - Sever silicon real-estate misuse in current systems
- CloudSuite2.0 two additional workloads
 - Graph Analytics, Data Caching
- Insights derived from CloudSuite impacted industry
 - E.g., Cavium ThunderX
- Recently started integration with Google's PerfKit
- Today: Official release of CloudSuite 3.0

What's new in CloudSuite 3.0

- A couple of different workloads
 - New: In-Memory Analytics
 - New software stack: Graph Analytics, Media Streaming, Web Search
- Updated software packages of all workloads

Target Audience

- System designers
 - Assess & compare systems' performance for cloud workloads
- Computer architects
 - Derive insights for future server design
- HPC community
 - Datacenter & HPC applications converging

Key Cloud Service Characteristics

- Serve independent requests/tasks
- Operate on huge dataset split into shards
- Communicate infrequently
- Strict real-time constraints

CloudSuite 3.0 Benchmarks

- Offline (Analytics)
 - Data Analytics
 - In-Memory Analytics
 - Graph Analytics
- Online
 - Data Caching
 - Data Serving
 - Media Streaming
 - Web Search
 - Web Serving

Offline Benchmarks

- Operate on large datasets
- Usually a machine learning algorithm over large datasets
- No QoS metric
 - Performance metric for analytics is throughput
- Performance metric:
 - Completion time (for a given input size)
 - Throughput (metric is benchmark-/algorithm-specific)

Data Analytics

- Massive amounts of human-generated data (Big Data)
- Extract useful information from data
 - Predict user preferences, opinions, behavior
 - Benefit from information (e.g., business, security)
- Several examples
 - Book recommendation (Amazon)
 - Spyware detection (Facebook)

Data Analytics Benchmark

- Application: Text classification
 - Sentiment analysis
 - Spam Identification

- Software: Mahout (Apache)
 - Popular MapReduce machine learning library

Dataset: Wikipedia English page articles

Data Analytics Benchmark

- Build a model from a Wikipedia training input
- Master sends Wikipedia documents for classification
- Slaves classify documents locally using model
- Slaves send results to master
- Throughput metric: # pages classified per unit of time

CloudSuite 3.0 Benchmarks

- Offline (Analytics)
 - Data Analytics
 - In-Memory Analytics
 - Graph Analytics

Online

- Data Caching
- Data Serving
- Media Streaming
- Web Search
- Web Serving

In-Memory Analytics

- In-memory processing for human-generated data
- Extract useful information from user data
 - Predict user preferences, rates
- Several examples
 - Movie recommendation (Netflix)
 - Item recommendation (Amazon)
 - Song recommendation (Spotify)
 - Recommending new friends, groups, ... (Social networks)

In-Memory Analytics Benchmark

- Application: Collaborative filtering
 - Recommendation systems

- Software: Apache MLlib
 - Popular Apache Spark machine learning library

Dataset: Movielens video database

In-Memory Analytics Benchmark

movielens

- Build a recommendation model with ALS matrix factorization
- Master partitions rating matrix, user & item vectors; sends them to workers
- Workers perform local matrix factorization
- Workers send results to master
- Throughput metric: # user/movie ratings per unit of time

CloudSuite 3.0 Benchmarks

- Offline (Analytics)
 - Data Analytics
 - In-Memory Analytics
 - Graph Analytics
- Online
 - Data Caching
 - Data Serving
 - Media Streaming
 - Web Search
 - Web Serving

Graph Analytics

- Parallel distributed graph processing
- Data mining on graphs
- Graph examples
 - Social networks (Facebook, Twitter)
 - Web graph

Graph Analytics Benchmark

- Application: PageRank
 - Measures influence of Twitter users
 - How much attention followers pay to a user

- Software: Apache GraphX
 - Parallel framework for graph processing

- Dataset
 - Twitter user graph

Graph Analytics Benchmark

- Distributes the graph across nodes
- Iterative computation: Always with adjacent vertices
- Communication across machines for adjacent vertices
- Output: influence of each user in the graph
- Performance metric: completion time

CloudSuite 3.0 Benchmarks

- Offline (Analytics)
 - Data Analytics
 - In-Memory Analytics
 - Graph Analytics
- Online
 - Data Caching
 - Data Serving
 - Media Streaming
 - Web Search
 - Web Serving

Online Benchmarks

- Operate on large datasets
- Throughput is important, but also need high service quality
 - Tail latency of requests is critical for service quality
 - Goal: Maximize throughput under QoS target
- Performance metrics:
 - Throughput (metric is benchmark-specific)
 - Delivered QoS (in terms of N-th percentile latency)

Data Caching

- Web apps are latency-sensitive
- Fetching data from disk is slow
- Caching data in memory for fast data access
 - General-purpose, in-memory key-value store
 - Caches data for other apps, another tier before back-end

Data Caching Benchmark

- Driver emulates Twitter users
- Memcached software to cache data in memory
- If data not found in cache, issues a disk access request
- Performance metrics: # requests/second, N-th pct latency

CloudSuite 3.0 Benchmarks

- Offline (Analytics)
 - Data Analytics
 - In-Memory Analytics
 - Graph Analytics

Online

- Data Caching
- Data Serving
- Media Streaming
- Web Search
- Web Serving

Data Serving

- Global-scale online services rely on NoSQL datastores
 - Inherently scalable
 - Suitable for unpredictable schema changes
- Scale out to meet service requirements
 - Accommodate fast data generation rate

Data Serving Operation

Data Serving Benchmark

- Yahoo! Cloud Serving Benchmark (YCSB) driver
 - Predefined mixes of read/write operations
 - Popularity of access distributions (e.g., zipfian)
 - Interface to popular datastores (e.g., Cassandra, HBase)

Data Serving Benchmark

- Cassandra datastore
 - Popular NoSQL: many use cases (e.g., Expedia, eBay, Netflix)
- Driver generates dataset
 - Defines number & size of fields
 - Populates datastore
- Performance metrics: R/W ops/s, N-th pct latency

CloudSuite 3.0 Benchmarks

- Offline (Analytics)
 - Data Analytics
 - In-Memory Analytics
 - Graph Analytics

Online

- Data Caching
- Data Serving
- Media Streaming
- Web Search
- Web Serving

Media Streaming

- Media streaming expected to dominate internet traffic
- Increasing popularity of media streaming services
 - Video sharing sites, movie streaming services, etc.

Media Streaming Operation

Media Streaming Benchmark

- Implements HTTP communication
- Uses the videoperf client, based on the httperf traffic generator
- Allows a flexible mix of requests
 - Different video lengths and qualities

Media Streaming Benchmark

- Server required to support HTTP
 - Nginx server
- Dataset consists of a mix of pre-encoded videos
 - Four video qualities of different durations (240p, 360p, 480p, 720p)
 - Exponential popularity distribution
- Performance metrics: streaming bandwidth (Kbps), avg. reply delay

CloudSuite 3.0 Benchmarks

- Offline (Analytics)
 - Data Analytics
 - In-Memory Analytics
 - Graph Analytics

Online

- Data Caching
- Data Serving
- Media Streaming
- Web Search
- Web Serving

Web Search

- Most popular online service
 - Numerous search engines deployed by industry

Search User

Frontend

Query Term	Document
Benchmark	1, 10, 17,
CloudSuite	3, 45,
Datacenter	9, 11, 14, 45,
EPFL	17, 10, 15,
PerfKit	3, 4,18

Index Serving Node (ISN)

Inverted Index

Index Serving Node (ISN)

Query Term	Document
Benchmark	1, 10, 17,
CloudSuite	3, 45,
Datacenter	9, 11, 14, 45,
EPFL	17, 10, 15,
PerfKit	3, 4,18

Inverted Index

Index Serving Node (ISN)

Query Term	Document
Benchmark	1, 10, 17,
CloudSuite	3, 45,
Datacenter	9, 11, 14, 45,
EPFL	17, 10, 15,
PerfKit	3, 4,18

Inverted Index

- Flexible request mixes
 - # terms per request from published surveys
 - Terms extracted from the crawled dataset

Apache Solr search engine for ISNs

- Dataset: Inverted index & snippets at ISN
 - Generated by crawling public web (Apache Nutch)
 - Data at ISN must be memory resident
- Performance metrics: search ops/sec, N-th pct latency

CloudSuite 3.0 Benchmarks

- Offline (Analytics)
 - Data Analytics
 - In-Memory Analytics
 - Graph Analytics

Online

- Data Caching
- Data Serving
- Media Streaming
- Web Search
- Web Serving

Web Serving

Key to all internet-based services

• All services are accessed through web servers

- Various technologies construct web content
 - HTML, PHP, JavaScript, Ruby

Web Serving Operation

- Faban traffic generator
- Pre-configured page transition matrix (Elgg)

- Web server (Nginx)
- Application server (PHP)
 - Serves a social network engine (Elgg)

• Cache server (Memcached)

- Database server (MySQL)
- Performance metrics:
 # pages/second served, N-th pct latency

CloudSuite 3.0 Benchmarks

- Offline (Analytics)
 - Data Analytics
 - In-Memory Analytics
 - Graph Analytics

Online

- Data Caching
- Data Serving
- Media Streaming
- Web Search
- Web Serving

Hands-on Session: CloudSuite 3.0 on Real Hardware

Alexandros Daglis

Demo Session: CloudSuite 3.0 Full-System Simulation

Javier Picorel

Software Simulation

- Allows for fast & easy evaluation of an idea
 - Minimal cost, simulator runs on your desktop
 - Reuse components, don't implement everything
- Enables various benchmarks (e.g., SPEC, CloudSuite)
 - Can execute real applications
 - Can simulate thousands of disks
 - Can simulate very fast networks

CloudSuite Simulation Requirements (I)

CloudSuite Benchmarks:

- Multi-threaded, multi-processor
- Data-intensive
- Multi-tier
- ⇒ Exercise OS and I/O extensively
- ⇒ OS and I/O are first-order performance determinants

CloudSuite Simulation Requirements (II)

Server architectures:

- Many-core processors
- Multiple memory controllers and memory chips
- Interconnects, cache hierarchies, ...
- Custom peripherals
- ⇒ Servers are complex hardware stacks
- ⇒ Interaction between layers determines performance

CloudSuite Simulation Requirements (III)

CloudSuite benchmarks:

Seconds of execution (trillions of instructions)

Full-system and cycle-accurate simulation:

- IM slowdown vs. real hardware
- ⇒ Long benchmarks and slow simulators
- → Years of simulation time per experiment

Simulation Stack: QFlex

Functional Full-System Simulation: QEMU

Detailed Microarchitectural Simulation: Flexus

Fast Simulation: Statistical sampling

Full-System Simulation with QEMU

Full-System Simulation Requirements

Full-system functional simulator must support:

- Privileged-mode ISA
- I/O devices
- Networks of systems
- Saving/restoring architecturally-visible state

QEMU Configuration & API

- Configuration file defines system components
 - Motherboard, CPUs, memory, I/O devices

- Extension to QEMU provides interface to simulation
 - Start and stop simulation
 - Access to target system's architecturally-visible state
 - Callback system under certain architectural events
 - Save and restore target system's architecturally-visible state

QEMU Interface

- QEMU does not provide timing details
 - But provides an architectural Interface
 - Allows a user module to take control over timing
- QEMU feeds Flexus with instructions
- Flexus controls instruction flow from QEMU
 - Flexus requests instructions from QEMU
 - Executes received instructions in cycle-accurate mode

Detailed Microarchitectural Simulation with Flexus

Main Idea

- Use existing system emulator (QEMU)
 - Handles BIOS (booting, I/O, interrupt routing, etc.)
- Build a "plugin" architectural model simulator
 - Fast read system's state from QEMU
 - Detailed interact with and throttle QEMU

Developing with Flexus

- Flexus philosophy
- Fundamental abstractions
- Important support libraries
- Simulators and components in Flexus

Flexus philosophy

- Component-based design
 - Compose simulators from encapsulated components
- Software-centric framework
 - Flexus abstractions are not tied to hardware
- Cycle-driven execution model
 - Components receive "clock-tick" signal every cycle
- SimFlex methodology
 - Designed-in fast-forwarding, checkpointing, statistics

Developing with Flexus

- Flexus philosophy
- Fundamental abstractions
- Important support libraries
- Simulators and components in Flexus

Flexus organization

Fundamental abstractions

- Component
 - Component interface
 - Specifies data and control entry points
 - Component parameters
 - Configuration settings available in cfg file
- Simulator
 - Wiring
 - Specifies which components and how to connect
 - Specifies default component parameter settings

Component interface

- Component interface (terminology inspired by Asim [Emer 02])
 - Drive: "clock-tick" control entry point to component
 - Port: specifies data flow between components

Components w/ same ports are interchangeable

Configuring components

- Configurable settings associated with component
 - Declared in component specification
 - Can be std::string, int, long, long long, float, double, enum
 - Declaration:

```
PARAMETER (BufferSize, int, "L2 Buffer size", "bsize", 64 )
```

Use: cfg.bsize

Simulator wiring

simulators/name/Makefile.name

- List components for link
- Indicate target support

simulators/name/wiring.cpp

- I. Include interfaces
- 2. Declare configurations
- 3. Instantiate components
- 4. Wire ports together
- 5. List order of drives

Developing with Flexus

- Flexus philosophy
- Fundamental abstractions
- Important support libraries
- Simulators and components in Flexus

Critical support libraries in /core

- Statistics support library
 - Record results for use with stat-manager
- Debug library
 - Control and view Flexus debug messages

Statistics support library

- Implements all the statistics you need
 - Histograms
 - Unique counters
 - Instance counters
 - etc.

Example:

```
Stat::StatCounter myCounter(
statName() + "-count");
++ myCounter;
```

A typical debug statement


```
Severity level
DBG (Iface,
                             Associate with this component
   Comp(*this),
   AddCategory ( Cache ), Put this in "Cache" category
    ( << "Received on</pre>
 FrontSideIn[0] (Request): " Text of the debug message
       << *(aMessage[MemoryMessageTag])</pre>
Addr(aMessage[MemoryMessageTag] ->address())
);
                            Add an address field for filtering
```

Developing with Flexus

- Flexus philosophy
- Fundamental abstractions
- Important support libraries
- Simulators and components in Flexus

Simulators in Flexus

Trace simulation

- Every instruction executes in a single cycle
- Fast Multi-level memory hierarchy
- Fast Two-level branch prediction

Timing (cycle-accurate) simulation

- "Cycle-by-cycle" execution of on-chip components:
 - Cores
 - NoC
 - Memory hierarchy
 - ...

Memory hierarchy

- Allows for high MLP
 - Non-blocking, pipelined accesses
 - Hit-under-miss within set
- Coherence protocol support
 - MESI and MOESI coherence protocols
 - Non-inclusive
 - Supports "Downgrade" and "Invalidate" messages
 - Request and snoop virtual channels for progress guarantees
- DRAMSim 2.0 integrated for low-level DRAM simulation

Out-of-order execution

- Timing-first simulation approach [Mauer'02]
 - OoO components interpret ARM (32/64 bits) ISA
 - Flexus validates its results with QEMU
- Idealized OoO to maximize memory pressure
 - Decoupled front-end
 - Precise squash & re-execution
 - Configurable ROB, SB; dispatch, retire rates
- Memory consistency models (SC,TSO, RMO)

Fast Simulation with Statistical Sampling

Statistical Sampling

- Random selection of population
 - E.g., 3000 out of 300 million
- Predict the behavior based on the selected sample
- Features:
 - High accuracy
 - Simple
 - Strong mathematical foundation

Statistical Sampling

Power of a small part to predict behavior of a whole

Simulation Speedup (I)

Measure in detailed a few parts of the execution

From few years to a month

Store functional warming

Saves us a few more days

From a few years to less than a month...

Simulation Speedup (II)

Store functional warming and parallelize

QFlex Status

QFlex project still an on-going effort...stay tuned!

QEMU Function Full-System Simulation

QFlex Trace simulation

QFlex cycle-accurate simulation

Statistical sampling for fast simulation

DEMO Session: QFlex Trace Simulator

DEMO Session: Overview

"Add a next-line prefetcher with configurable prefetch degree length"

Steps:

- I. QFlex structure overview
- 2. Create the new component
- 3. Create a new simulator for the new component
- 4. Run the new simulator and the baseline
- 5. Extract and compare results

Send us an email to test our simulator!

For more information please visit us at parsa.epfl.ch

